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Ivan Nagya,b, Evgenia Suzdalevab
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bDepartment of Adaptive Systems, Institute of Information Theory and Automation of the ASCR, Pod
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Abstract

The paper proposes a recursive algorithm for estimation of mixtures with state-space compo-
nents and a dynamic model of switching. Bayesian methodology is adopted. The main features
of the presented approach are: (i) recursiveness that enables a real-time performance of the
algorithm; (ii) one-pass elaboration of the data sample; (iii) dynamic nature of the model of
switching active components; (iv) orientation at explicit solutions with exploitation of numerical
procedures only in those parts which cannot be computed analytically; (v) systematic approach
to the Bayesian mixture estimation theory.

Keywords: probabilistic dynamic mixtures, probability density function, state-space models,
recursive mixture estimation, Bayesian dynamic decision making under uncertainty, Kerridge
inaccuracy

1. Introduction

Dynamic systems modifying their behavior by switching several regimes are met in various
application areas (industry, medicine, economics, traffic control, etc.). These regimes often differ
a lot from each other and then a system must be described by a mixture of several models –
components. Mixture models are known to be universal approximations for description of such
systems [1]. Switching of the active components (which corresponds to switching of the active
system regimes) is often described via hidden Markov models (HMM) theory, see e.g., [2].

Within the bounds of individual regimes an unobservable variable can appear – a system
state. When the state variable is to be estimated, each regime should be described by a state-
space model [3], and the system is modeled by a mixture of state-space components. Estimation
of mixtures of state-space models is closely related to tasks of clustering and classification. The
developed algorithms can find their application in the form of on-line advising systems which
evaluate the active regime and inform an operator or advise a control action.

The following approaches can be found in the area of mixture estimation with state-space
components. A series of algorithms is based on Variational Bayes (VB) methods [4, 5, 6, 7]
that propose variational approximations to maximize the lower bound of the likelihood. An
alternative approach found for switching state-space models is numerical iterative techniques
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based on Markov Chain Monte Carlo (MCMC) methods [8, 9, 10, 11]. However, the mentioned
algorithms rely on completely numerical solutions and are not fully on-line.

In this paper, we look for a systematic approach to the mixture estimation theory with
possibility of further development of algorithms and their applications in practice. We follow a
methodology of Bayesian dynamic decision-making under uncertainty adopted in [12] providing
the algorithms with high potential for practical applications, see e.g., [13]. Here, we continue a
line proposed in [14] and [15] that, using a similar approach, develop the recursive algorithms
for estimation of dynamic mixtures of autoregression models and dynamic transition [14] and
for state estimation of hybrid systems [15]. The presented paper demonstrates that this uni-
fied approach in the frame of the Bayesian methodology can also be extended to the mixture
estimation with state-space components and dynamic switching.

The main contributions of the presented algorithm are:

• A dynamic model of switching based on the dependence of the current active component
on the previous one. This is a key point for estimation of the active regime of the system.

• A fixed computational complexity during one-pass elaboration of the data sample. It is
reached by the fact that the posterior probability density functions (pdfs) are approxi-
mately self-reproducing and preserve forms of the prior pdfs. This can be decisive for
on-line applications or working with extensive databases.

• A universal real-time easily computable approximation based on the Kerridge inaccuracy
[16]. The Kerridge inaccuracy is a part of the Kullback-Leibler divergence [17] which, in
the form different from that used in VB methods, is known to be an optimal tool within
the adopted Bayesian methodology (see proof in [18]). This universality is significant for
further development of the algorithms.

• Explicit solutions with the exception of the Kerridge inaccuracy.

Layout of the paper is as follows. Section 2 formulates a problem. Section 3 provides basic
known facts about state-space models, state estimation and Markov model estimation. It also
introduces a mixture model. Section 4 constructs the joint pdf of all observed and unknown
variables, decomposes it into the models and the prior pdfs and introduces the independence
assumptions. Section 5 is devoted to the algorithm derivation. Approximation that is necessary
to complete the proposed solution is presented in Section 6. The resulting estimation algorithm
is proposed in Section 7. Section 8 provides illustrative experiments and comparison with
theoretical counterparts. Conclusion can be found in Section 9. Detailed derivations of the
proposed formulas are available in Appendix 10.

2. Problem formulation

Let us consider a system which produces an observable output variable dt, a state variable
xt which cannot be measured and (optionally) an input variable ut at discrete time instants
t = {1, . . . , T} ≡ t∗. Let this system work in several randomly switching regimes. These
regimes are supposed to be so different, that it is not possible to describe them all by a single
model. A mixture of state-space models is an appropriate tool for description of such a system.
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The main task addressed in this paper is to estimate recursively the unobserved state xt and
the active regime of the system in dependence on the previous one. Thus, the fully dynamic
state-space mixture estimation will be considered.

3. Preliminaries

Let us first recollect a state-space model describing a single component and a standard way
for the state estimation.

3.1. State-space model

The state-space model is composed of two parts. The first one, the state model, describes a
time evolution of the state. The second part, the observation model, determines how measure-
ments are related to the state. We will assume these models in the form

f (xt|xt−1) and f (dt|xt) , (1)

where f(·|·) is a conditional probability (density) function denoted by pdf throughout this paper,
xt and xt−1 are the actual and the past states and dt is the observation. The input variable ut

is omitted here for brevity reasons and its presence in both the models brings no complication.

3.2. General solution to state estimation

General probabilistic solution of Bayesian filtering [19] is used to estimate the unobserved
state xt. Denoting a set of measurements by D(t) = (d1, . . . , dt), we can express a prior (initial)
state pdf at time t as f (xt−1|D(t− 1)). Bayesian filtering takes this prior pdf, predicts for the
time instant t and corrects the pdf by incorporation of actually measured data. Then it results
in the updated posterior state pdf f (xt|D(t)) keeping its initial form. This recursion is easily
derived with the help of construction of the joint pdf f(dt, xt|D(t−1)) of data and the unknown
state, application of Bayes rule (see Appendix 10) and an operation of marginalization:

f(xt|D(t)) =
f(dt, xt|D(t− 1))∫

x∗
f(dt, xt|D(t− 1))dxt

=

∫
x∗

f(dt, xt, xt−1|D(t− 1))dxt−1∫
x∗

f(dt, xt|D(t− 1))dxt

, (2)

then by decomposition via the chain rule (see Appendix 10) and making the independence
assumptions [19]:

f(xt|D(t)) =

∫
x∗

f(dt|xt)f(xt|xt−1)f(xt−1|D(t− 1))dxt−1∫
x∗

f (dt|xt)
∫

x∗
f (xt|xt−1) f (xt−1|D(t− 1)) dxt−1dxt

, (3)

where x∗ is a set of all possible values of xt, ∀t, and the denominator represents the data
prediction: ∫

x∗
f (dt|xt)

∫
x∗

f (xt|xt−1) f (xt−1|D(t− 1)) dxt−1dxt = f (dt|D(t− 1)) . (4)

The obtained recursion (3) consists of models (1) and the prior pdf f (xt−1|D(t− 1)), whose
form should be preserved. This general approach is used throughout the presented paper. The
recursion starts with the prior pdf f (x0|D(0)), which expresses the subjective prior knowledge
about the initial state.

For a normal prior pdf and linear normal models (1) Bayesian filtering coincides with Kalman
filter [20, 19, 3].
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3.3. Kalman filter

Normal linear models (1) take a form

f (xt|xt−1) = Nxt

Axt−1︸ ︷︷ ︸
mean

,

variance︷︸︸︷
Rw

 , f (dt|xt) = Ndt (Cxt, Rv) , (5)

where N denotes normal distribution of a variable; A, C are parameters supposed to be known
of appropriate dimensions; Rw and Rv are process and measurement noise covariance matrices
respectively assumed to be known and time-invariant. The prior state pdf is also chosen as
normal distribution, i.e., for t = 1

f (xt−1|D(t− 1)) = N
(
ξt−1|t−1, Rt−1|t−1

)
(6)

with mean ξt−1|t−1 and covariance matrix Rt−1|t−1.
The Kalman filter [3] with models (5) and the prior distribution (6) includes the following

equations:
Time updating

Rt|t−1 = Rw + ARt−1|t−1A
′, (7)

ξt|t−1 = Aξt−1|t−1, (8)

Data updating

Ry = Rv + CRt|t−1C
′, (9)

Rt|t = Rt|t−1 −Rt|t−1C
′R−1

y CRt|t−1, (10)

KG = Rt|tC
′R−1

v , (11)

ξt|t = ξt|t−1 + KG

(
dt − Cξt|t−1

)
, (12)

where ξt|t and Rt|t determine the resulting normal posterior pdf f (xt|D(t)).
The data predictive pdf (4) in this case is denoted by Ldt and computed as

f (dt|D(t− 1)) = (2π)−
Y
2 |Ry|−

1
2 exp

{
−1

2
[dt − Cξt|t]

′R−1
y [dt − Cξt|t]

}
≡ Ldt , (13)

where Y is a dimension of the vector dt.

3.4. Model of switching

In this paper, a mixture model consists of a set of nc state-space components (1)

{f (xt|xt−1, c) , f (dt|xt, c)}nc

c=1 , (14)

where c labels individual components. In order to describe a switching of the components, this
label is introduced as a discrete random process

{ct}T
t=1, ct = {1, 2, . . . , nc} ≡ c∗, (15)
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which is called a pointer. Its realization ct at each time instant t points at the active component
that corresponds to the active regime of the system.

A dynamic pointer can be described by a Markov model defined by the conditional pdf

f (ct|ct−1, α) = αct|ct−1 , (16)

where αct|ct−1 is a transition probability, ct|ct−1 is a multi-index and it holds

αct|ct−1 ∈ α∗ =

{
αct|ct−1 ≥ 0,

∑
c∈c∗

αc|ct−1 = 1, ∀ct, ct−1 ∈ c∗, ∀t ∈ t∗

}
. (17)

3.5. Markov model estimation

In the case of a known active component, according to [12], model (16) can be estimated in
the analytical way using the conjugate prior pdf f (α|D(t− 1)) in the Dirichlet form, i.e.,

f (α|D(t− 1)) = Dα (νt−1) =
1

B(νt−1)

∏
i|j

α
νi|j;t−1−1

i|j , (18)

where i|j is a multi-index with i, j ∈ c∗, and νi|j;t−1 is a prior statistics of estimation for time t
and B (νt−1) is a normalization constant, which has the form of multivariate beta function [12]

B(ν) =
∏
j∈c∗

∏
i∈c∗ Γ

(
νi|j
)

Γ
(∑

i∈c∗ νi|j
) . (19)

For given ct and ct−1, the statistics entries νi|j;t evolve in time according to the formula

νi|j;t = νi|j;t−1 + δ (ct|ct−1; i|j) , i, j ∈ c∗, t = 1, 2, · · · , (20)

where δ is Kronecker delta such that δ (ct|ct−1; i|j) = 1 for ct = i and ct−1 = j and equals to
zero otherwise. Using statistics (20), the point estimates of αi|j can be computed as follows:

α̂i|j;t ≡
∫

α∗
αi|jf (α|D(t)) dα =

νi|j;t∑
i νi|j;t

. (21)

These preliminaries provide the well known solutions for the known active components. In
the case of the unknown pointer value ct the presented solutions lose self-reproductivity of prior
pdfs and become unfeasible due to arising sums in posterior pdfs (it will be explained later).

However, it can be shown that applying Bayes rule, just similar as for recursions (3) and
(4), we can derive an algorithm of recursive estimation of the state-space mixture. Thus, the
main steps of the algorithm derivation will include: (i) construction of the joint pdf of data
and all unknown variables; (ii) its decomposition according to the chain rule; (iii) application
of assumptions about the conditional independence; (iv) expression of evolution of the joint pdf
in time, using the models and the prior pdfs; (v) marginalization of the joint pdf; (vi) necessary
approximations to obtain the posterior pdfs.

This problem solved in subsequent sections is the main contribution of the paper.
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4. Joint pdf construction

The system is described by the mixture of the state-space components (14). Throughout
this paper, parameters of the state-space components are supposed to be known. The unknown
variables to be estimated are: the n-dimensional state xt, values of the pointer process ct and
the transition table α whose entries αi|j are the stationary probabilities of switching from the
jth component to the ith one.

To express the models and the forms of the prior pdfs we have to construct the joint pdf of
all the involved variables dt, xt, xt−1, ct, ct−1, α. It takes the form

f(dt, xt, xt−1, ct, ct−1, α|D(t− 1)) (22)

that can be factorized via the chain rule as

f (dt|xt, xt−1, ct, ct−1, α, D(t− 1)) f (xt|xt−1, ct, ct−1, α,D(t− 1)) f (xt−1|ct, ct−1, α,D(t− 1))

×f (ct|ct−1, α, D(t− 1)) f (ct−1|α, D(t− 1)) f (α|D(t− 1)) (23)

and then results in the form

f (dt|xt, ct) f (xt|xt−1, ct)︸ ︷︷ ︸
state−space model

f (xt−1|D(t− 1))︸ ︷︷ ︸
prior state pdf

f (ct|ct−1, α)︸ ︷︷ ︸
pointer model

f (ct−1|D(t− 1)) f (α|D(t− 1))︸ ︷︷ ︸
prior pdfs for pointer and for α

, (24)

where the following independence assumptions are made:

f (dt|xt, xt−1, ct, ct−1, α, D(t− 1)) = f (dt|xt, ct) , (25)

f (xt|xt−1, ct, ct−1, α, D(t− 1)) = f (xt|xt−1, ct) , (26)

f (xt−1|ct, ct−1, α,D(t− 1)) = f (xt−1|D(t− 1)) , (27)

f (ct|ct−1, α,D(t− 1)) = f (ct|ct−1, α) , (28)

f (ct−1|α, D(t− 1)) = f (ct−1|D(t− 1)) (29)

that omits independent variables from the conditions of the involved pdfs.

5. Recursive estimation of the state-space mixture

To derive the estimation algorithm the joint pdf of the estimated variables should be con-
structed.

5.1. Joint pdf of estimated variables

The joint pdf of the estimated variables f (xt, ct, α|D(t)) is derived from (24) by summation
over ct−1 and integration over xt−1 and with the help of (3) and (4):

f (xt, ct, α|D(t)) ∝ f (dt|xt, ct)

∫
x∗

f (xt|xt−1, ct) f (xt−1|D(t− 1)) dxt−1︸ ︷︷ ︸
f(dt,xt|ct,D(t−1))∝f(xt|ct,D(t))

×
∑

ct−1∈c∗

f (ct|ct−1, α) f (ct−1|D(t− 1)) f (α|D(t− 1)) . (30)
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According to [12] and recalling (16), we can recompute a product of the pointer model f (ct|ct−1, α)
and the Dirichlet prior pdf f (α|D(t− 1)) entering (30) as

f (ct|ct−1, α) f (α|D(t− 1)) = αct|ct−1Dα (νt−1) = α̂ct|ct−1;t−1Dα

(
ν

ct|ct−1

t−1

)
, (31)

where

• νt−1 is a (nc × nc)-matrix with non-negative items νct|ct−1;t−1,

• α̂ct|ct−1;t−1 is a point estimate of αct|ct−1 (21)

• and Dα

(
ν

ct|ct−1

t−1

)
is a Dirichlet distribution of the same form as Dα (νt−1) but with the

argument
ν

ct|ct−1

i|j;t−1 = νi|j;t−1 + δ (ct|ct−1; i|j) , (32)

where the superscript stresses the dependence on the component labels ct and ct−1.

Note that this update is similar to (20) but it is not definitive, because the summation in the
joint pdf (30) destroys the original form: (30) now takes the form

f (xt, ct, α|D(t)) = f (dt, xt|ct, D(t− 1))
∑

ct−1∈c∗

α̂ct|ct−1;t−1f (ct−1|D(t− 1))Dα

(
ν

ct|ct−1

t−1

)
. (33)

The recursive estimation of the unknown variables xt, ct and α can be derived via marginalization
of the joint pdf (33), which is shown in subsequent sections.

5.2. Estimation of the pointer variable ct

In order to derive the posterior pdf f (ct|D(t)) for estimation of the pointer value ct, the
joint pdf (33) is marginalized in the following way:

f (ct|D(t))

∝
∫

x∗

∫
α∗

f (dt, xt|ct, D(t− 1))
∑

ct−1∈c∗

α̂ct|ct−1;t−1f (ct−1|D(t− 1))Dα

(
ν

ct|ct−1

t−1

)
︸ ︷︷ ︸

(33)

dαdxt

=
∑

ct−1∈c∗

f (dt|ct, D(t− 1)) α̂ct|ct−1;t−1f (ct−1|D(t− 1))︸ ︷︷ ︸
denoted by w̄ct|ct−1

∝
∑

ct−1∈c∗

wct|ct−1 = wct , (34)

where ∝ means proportionality,

wct|ct−1 =
w̄ct|ct−1∑

ct∈c∗
∑

ct−1∈c∗ w̄ct|ct−1

(35)

and where the integration over xt gives the marginal pdf (it coincides with the data prediction (4)
for the cth component), and the integration over α produces 1. The prior pdf f (ct−1|D(t− 1)) =
wct−1 and the posterior one f (ct|D(t)) = wct are just numeric vectors. Consequently, no special
form is necessary to be preserved.
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5.3. Estimation of the parameter α

Similarly, the posterior pdf f (α|D(t)) for estimation of the parameter α is derived via
marginalization of (33), i.e., integration over xt and summation over ct. According to the data
prediction (4), which is a plain computation of a marginal pdf, it is obtained:

f (α|D(t))

∝
∑
ct∈c∗

∫
x∗

f (dt, xt|ct, D(t− 1))
∑

ct−1∈c∗

α̂ct|ct−1;t−1f (ct−1|D(t− 1))Dα

(
ν

ct|ct−1

t−1

)
︸ ︷︷ ︸

(33)

dxt

=
∑
ct∈c∗

∑
ct−1∈c∗

f (dt|ct, D(t− 1)) α̂ct|ct−1;t−1f (ct−1|D(t− 1))︸ ︷︷ ︸
w̄ct|ct−1

Dα

(
ν

ct|ct−1

t−1

)

∝
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1Dα

(
ν

ct|ct−1

t−1

)
(36)

with wct|ct−1 obtained in (35). Here it can be seen that relation (36) is a sum of pdfs. Number
and complexity of the generated posterior pdfs exponentially grow, and the original Dirichlet
form of the prior pdf is destroyed. It means that result (36) is not feasible for a recursive
evaluation. Thus an approximation restoring the original form of the prior pdf is necessary.
The solution to this problem is presented in Section 6.

5.4. Estimation of the state xt

The posterior pdf for estimation of the state xt is evolved according to marginalization of
(33) with integration over α and summation over ct, i.e.,

f (xt|D(t))

∝
∑
ct∈c∗

∫
α∗

f (dt, xt|ct, D(t− 1))
∑

ct−1∈c∗

α̂ct|ct−1;t−1f (ct−1|D(t− 1))Dα

(
ν

ct|ct−1

t−1

)
︸ ︷︷ ︸

(33)

dα

=
∑
ct∈c∗

f (xt, dt|ct, D(t− 1))
∑

ct−1∈c∗

α̂ct|ct−1;t−1f (ct−1|D(t− 1))

=
∑
ct∈c∗

f (xt|ct, D(t))
∑

ct−1∈c∗

f (dt|ct, D(t− 1)) α̂ct|ct−1;t−1f (ct−1|D(t− 1))︸ ︷︷ ︸
w̄ct|ct−1

=
∑
ct∈c∗

f (xt|ct, D(t))
∑

ct−1∈c∗

wct|ct−1 =
∑
ct∈c∗

wctf (xt|ct, D(t)) , (37)

where the pdf f (xt|ct, D(t)) naturally follows from Bayesian filtering (3) performed for the
component ct, and

∑
ct−1∈c∗ wct|ct−1 = wct is presented in (34). Again, the obtained result

produces repetitive products of sums and loses its original form. Such a computation is not
recursively feasible and thus an approximation is needed in order to restore the prior form.
This solution is discussed in Section 6.

8



  

6. Approximation

A valued feature of the suggested estimation algorithms is their real-time performance. The
state estimation and its classification into the components run in time as the data are measured.
According to the adopted Bayesian approach, the unknown objects (the state xt, the parameter
α and the pointer value ct) are described through the recursive evolution of their “prior →
posterior” pdfs. Due to the recursive nature of this evaluation, it is necessary to guarantee
their self-reproducibility which means that the prior pdf and the corresponding posterior one
are structurally identical. Evolution is allowed only in their numerical characteristics. If this
property is not guaranteed, complexity of the posterior pdfs during their evolution grows until
they become unfeasible.

The recursive nature of computation appears at all three considered recursions (34), (36)
and (37). The pdf of the pointer f (ct|D(t)) in (34) is a mere vector and its structure is not
disturbed. However, formulas (36) and (37) show that they are not self-reproducing. Thus, the
self-reproducing property must be secured only for the state xt and the parameter α. A remedy
applied here is to approximate the arising sums immediately at each step of the estimation and
restore the original form of the corresponding prior pdfs.

6.1. Approximation for estimation of α

Let us consider relation (36) from Section 5.3, where the prior pdf f (α|D(t− 1)) should
preserve the Dirichlet distribution, but its form is destroyed due to the summation. To restore
it, an approximating pdf f̂ (α|(D(t)) is chosen with the Dirichlet distribution

f̂ (α|D(t)) = Dα (νt) , (38)

minimizing the Kerridge inaccuracy [16]

K
(
f (α|D(t)) ‖ f̂ (α|D(t))

)
=

∫
α∗

f (α|D(t)) ln
1

f̂ (α|D(t))
dα, (39)

where f(α|D(t)) is computed according to (36):

f(α|D(t)) =
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1Dα

(
ν

ct|ct−1

t−1

)
. (40)

The Kerridge inaccuracy [16] is a part of the Kullback-Leibler divergence [17] that in the form∫
α∗

f (α|D(t)) ln
f (α|D(t))

f̂ (α|D(t))
dα

(in the considered context) is known to be an optimal tool within the adopted Bayesian approach
(see proof in [18]). As during derivation the function in the nominator of the logarithm is
reduced and the minimization results both for the Kerridge inaccuracy and the Kullback-Leibler
divergence are identical, we can use the first of them.

The approximating pdf (38) minimizing the Kerridge inaccuracy (39) over the statistics
νt = [νi|j;t]i,j∈c∗ is defined by this statistics solving the equation

Ξ
(
νi|j;t

)
=
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1Ξ
(
ν

ct|ct−1

i|j;t−1

)
, (41)
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where ν
ct|ct−1

i|j;t−1 are introduced in (32) and wct|ct−1 in (35), and the following definitions are used:

Ξ
(
νi|j
)

= Ψ
(
νi|j
)
−Ψ

(∑
k

νk|j

)
=

∫
α∗

ln
(
αi|j
)
Dα (ν) dα (42)

with the following Ψ function

Ψ (z) =
d

dz
ln Γ (z) . (43)

A numerical solution to equation (41) must be performed at each step of the estimation. How-
ever, it causes neither increased complexity nor longer computational time due to the fact, that
the minimized function (39) is a convex function of νt. Thus, the search for an extreme is
straightforward and the extreme found is always the global minimum.

Proof is available in Appendix 10.4.

6.2. Approximation for the state estimation

Here we deal with formula (37) from Section 5.4, where the updated pdf f(xt|D(t)) is a
weighted mixture model. In case of its normal components (5), each posterior pdf f(xt|ct, D(t))
is evolved via the Kalman filter (7)–(12) applied for individual components. The approximation
task is to replace this mixture by a single normal pdf f̂ (xt|D(t)) so that the Kerridge inaccuracy

K
(
f (xt|D(t)) ‖ f̂ (xt|D(t))

)
=

∫
x∗

f (xt|D(t)) ln
1

f̂ (xt|D(t))
dxt (44)

reaches its minimum. With denotations

f (xt|ct, D(t)) = N
(
ξct;t|t, Rct;t|t

)
and f̂ (xt|D(t)) = N

(
ξ̂t|t, R̂t|t

)
(45)

and wct defined in (34) the result of the approximation is

ξ̂t|t =
∑
ct∈c∗

wctξct;t|t, (46)

R̂t|t =
∑
ct∈c∗

wctRct;t|t +
∑
ct∈c∗

wct

(
ξ̂t|t − ξct;t|t

)(
ξ̂t|t − ξct;t|t

)′
. (47)

The derivation of the result can be found in Appendix 10.3.

6.3. The joint pdf after approximation

The desired posterior joint pdf (33) involving the results of approximation now takes the
following form:

f (xt, ct, α|D(t)) ≈ f̂ (xt|D(t)) f (ct|D(t)) f̂ (α|D(t)) , (48)

where the normal approximated pdf f̂ (xt|D(t)) is determined by (46)–(47), the Dirichlet pdf
f̂ (α|D(t)) is given by the statistics νi|j;t computed as the numerical solution of equation (41),
and the pointer pdf f (ct|D(t)) is provided in (34). Relation (48) represents a feasible form of
the discussed recursive estimation of the mixture of state-space components.
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7. Algorithm

The obtained results can now be summarized in the form of an algorithm.
Initial part (start of the algorithm)

• Specify the number of components nc, parameters of the normal state-space model (5) for
each component and set initial values of the prior state estimate (6).

• Choose initial values of the statistics νi|j;0 with i, j ∈ c∗ and compute the initial point
estimate α̂ct|ct−1;0 according to (21).

• Set initial values of probabilities in the pointer vector wc0 , c0 ∈ c∗.

On-line part (time cycle of the algorithm)

1. Load the current data item dt.

2. For individual components ct = 1, 2, · · · , nc, run the Kalman filter (7)–(12), get the state
posterior pdfs with means ξct;t|t and covariance matrices Rct;t|t and compute the data
predictive pdfs Lct;dt according to (13).

3. Update the vector of the pointer wct according to (34), i.e.,

w̄ct|ct−1 = Lct;dtα̂ct|ct−1;t−1wct−1 ,

wct|ct−1 =
w̄ct|ct−1∑

ct∈c∗
∑

ct−1∈c∗ w̄ct|ct−1

,

wct =
∑

ct−1∈c∗

wct|ct−1 .

4. Use a numerical method to solve equation (41) and obtain the optimal statistics νi|j;t for
i, j ∈ c∗ defining the approximated pdf (38).

5. Compute the point estimate α̂ct|ct−1;t =
νi|j;tP
i νi|j;t

with the obtained statistics νi|j;t.

6. Using the updated vector of the pointer wct , make approximation (46)–(47) and obtain
the state approximated posterior pdf with the mean ξ̂t|t and the covariance matrix R̂t|t.

7. Compute the point estimate of the active component(s) on the basis of the vector wct , for
instance, as the most probable component (if necessary).

8. Use statistics of the obtained posterior pdfs, i.e., ξ̂t|t, R̂t|t, νt, α̂ct|ct−1;t and wct for the prior
ones in the next step of the recursions.

8. Experiments

The proposed algorithm (in this section denoted by MF, i.e., the mixture filter) was tested
on simulated data. For comparison, the well known Monte Carlo particle filter (PF) and the
Rao-Blackwellised particle filter (RBPF), see e.g., [21, 22], were chosen, where the last was
interpreted as an efficient stochastic mixture of Kalman filters. The PF and RBPF software
implementation including the efficient state-of-the-art generic resampling routines available at
www.cs.ubc.ca/∼nando/software.html was used for the experiments which compared the per-
formance of all the mentioned algorithms. Difference in results of all three filters was not
significant. However, the computational time differed a lot. Here we report the results of the
series of the experiments performed using the PF built-in data generator.
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8.1. Simulation

To generate the 2-dimensional Gaussian state xt and the scalar observation dt for 3 compo-
nents (i.e., nc = 3) the following parameters of the state-space components were used:

A1 = [0.3 − 0.3; 0.5 0.1], C1 = [0.9 0.4], F1 = [−5 25]′, Rw1 = [4 0; 0 4], Rv1 = 0.4,

A2 = [0.05 − .3; 0.4 − 0.1], C2 = [2.1 2.8], F2 = [25 5]′, Rw2 = [12 0; 0 12], Rv2 = 0.2,

A3 = [0.6 − 0.1; 0.8 − 0.5], C3 = [1.9 − 0.4], F3 = [5 − 25]′, Rw3 = [2 0; 0 2], Rv3 = 0.5,

where subscripts express the number of the corresponding component, F is a constant added
to the state evolution model in (5), i.e., the mean value in (5) is taken as Axt−1 + F . 1000
data items were generated. The table of the transition probailities α was set using a random
generator. 50 simulations were performed.

The data sample generated during each simulation was used for the state and the pointer
estimation via PF, RBPF and MF. 200 particles were used for the estimation both with PF and
RBPF. The prior state estimates were chosen with ξt−1|t−1 = [0; 0] and Rt−1|t−1 = [10 0; 0 10].
The initial estimates of the transition table were selected randomly.

8.2. Results

Results of the performed 50 experiments were rather similar. One of the typical results
of the state estimation obtained using MF, PF and RBPF is shown in Figure 1. For better
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Figure 1: Comparison of the state estimation
Note a difference of the results between 50 and 100 time periods and near 250 time periods.
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illustration, a fragment with 300 data items from 1000 is plotted, because larger number of data
in the figure worsens visibility.

The results are shown for the first entry of the state vector. For the second state, they are
is of a similar quality. The state estimates of all three algorithms in Figure 1 are very close to
the simulated values. The difference can be seen, for example, between 50 and 100 time periods
and near 250 time periods, where the MF results are closer to the simulated values.

The typical results of the data prediction are presented in Figure 2 for a fragment of 300
data items. PF and RBPF produced identical results, thus Figure 2 (top) presents the MF data
predictions, and Figure 2 (bottom) – the RBPF data predictions. The predictions of all the
filters are rather similar, however, the difference in favor of MF can be seen around 40, 80 and
from 180 to 225 time periods.
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Figure 2: Comparison of the data prediction
Notice the difference of the results around 40, 80 and from 180 to 225 time periods.

For the pointer estimation, MF typically produced results better than PF, but worse than
RBPF. These results expressing the point estimates of active components are provided in Fi-
gure 3 (top), (middle) and (bottom) for MF, PF and RBPF respectively. A fragment for 100
data items is chosen for better illustration.

The average errors of the state estimation (SEE), the data prediction (DPE) and the pointer
estimation (PEE) over 50 experiments (denoted by N) with 1000 data items for all three filters
are reported in Table 1. SEE and DPE were calculated as follows:

SEE =
1

NT

T=1000∑
t=1

N=50∑
n=1

(xt,n − ξ̂t|t,n)′(xt,n − ξ̂t|t,n),
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Figure 3: Comparison of the pointer estimation
Notice a difference of the estimates around 12, 35 and 60 time periods.

DPE =
1

NT

T=1000∑
t=1

N=50∑
n=1

(dt,n − d̂t,n)2,

where a subscript n denotes the number of the experiment, d̂t, n is the predicted data item.
PEE is computed as the count of errors of the point estimates averaged over the number of the
experiments N . Table 1 also provides the average computation time (CT) compared with the
help of the Matlab functions tic and toc.

Table 1: The average errors and the computation time

SEE DPE PEE CT
MF 0.15 0.62 160.4 0.42
PF 0.31 0.88 216 25.27

RBPF 0.27 0.88 129 47.7

Figure 4 demonstrates the state-space components plotted in the form of clusters, where it
can be seen that, in general, the difference in the results is not too significant.
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Figure 4: Comparison of the clustered states

8.3. Discussion

Surely it is necessary to consider that these experiments were performed with the simulated
data, and the estimation quality of the algorithms can differ for real measurements. Neverthe-
less, the results presented in Table 1 are promising: MF provides the smallest average errors of
the state estimation and the data prediction in comparison with PF and RBPF, and it has the
second smallest average error of the pointer estimation after RBPF.

The difference of the computation time reported in Table 1 is substantial: MF is significantly
faster. This can be decisive for such application areas, where a real-time filtering for dynamic
systems with multiple working regimes is desired (for instance, traffic control, where the queue
length at crossroads is often modelled as the unmeasurable state, and its real-time estimation
is strongly needed for the traffic light control).

9. Conclusion

The paper proposed the recursive algorithm for estimation of mixtures with state-space com-
ponents and the dynamic switching model. The so called fully dynamic mixture is considered
where the switching of active components is modeled in dependence on the last active compo-
nent. The algorithm represents an extension of solutions used for the estimation of mixtures of
autoregression models and for the state estimation of hybrid systems, inheriting such advantages
as one-pass estimation, real-time performance and generality of approach. The presented illus-
trative experiments show the promising results of the proposed algorithm and the significantly
shorter computation time in comparison with two particle filters.

Further extension of this approach can be applied for prediction of future active components
that is enabled by the dynamic model of switching. This complicated problem inspired by an
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anonymous reviewer will be the subject of further research. The open problems remained here
include also (but not limited to) usage of non-linear models of the pointer.
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10. Appendix

10.1. Chain rule

The chain rule [12] takes the form

f(a, b|c) = f(a|b, c)f(b|c), (49)

which decomposes the joint pdf f(a, b|c) into a product of the conditional pdfs for any random
variables a, b and c.

10.2. Bayes rule

The Bayes rule [12] claims that

f (a|b, c) ∝ f (b, a|c) (50)

or with application of the chain rule

f (a|b, c) ∝ f (b|a, c) f (a|c) (51)

for any random variables a, b and c.

10.3. Approximation of normal mixture by normal distribution

Let f(xt|D(t)) =
∑nc

ct=1 wctf (xt|ct, D(t)) be a mixture of normal components f (xt|ct, D(t)) =

N
(
ξct;t|t, Rct;t|t

)
, where ξct;t|t are expectations and Rct;t|t are covariance matrices. The goal is

to construct a single normal pdf f̂ (xt|D(t)) = N
(
ξ̂t|t, R̂t|t

)
, which is as close as possible to the

mixture f(xt|D(t)) in the sense of minimization of the Kerridge inaccuracy

K
(
f (xt|D(t)) ‖ f̂ (xt|D(t))

)
=

∫
x∗

f (xt|D(t)) ln
1

f̂ (xt|D(t))
dxt.

Let us firstly compute the Kerridge inaccuracy between the normal distribution of the ctth

component f (xt|ct, D(t)) = N
(
ξct;t|t, Rct;t|t

)
and the desired f̂ (xt|D(t)) = N

(
ξ̂t|t, R̂t|t

)
of the

X-dimensional random vector xt. Denoted by Kct , it takes the form

Kct =

∫
x∗
N
(
ξct;t|t, Rct;t|t

)
ln

1

(2π)−X/2|R̂t|t|−0.5 exp

{
−0.5

(
xt − ξ̂t|t

)′
R̂−1

t|t

(
xt − ξ̂t|t

)} dxt

=

∫
x∗

[
− ln

(
(2π)−X/2

)
+ 0.5 ln |R̂t|t|+ 0.5

(
xt − ξ̂t|t

)′
R̂−1

t|t

(
xt − ξ̂t|t

)]
N
(
ξct;t|t, Rct;t|t

)
dxt
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= − ln
(
(2π)−X/2

)
+ 0.5 ln |R̂t|t|

+0.5

∫
x∗

({
xt − ξct;t|t

}
+
{

ξct;t|t − ξ̂t|t

})′
R̂−1

t|t

({
xt − ξct;t|t

}
+
{

ξct;t|t − ξ̂t|t

})
N
(
ξct;t|t, Rct;t|t

)
dxt

= − ln
(
(2π)−X/2

)
+ 0.5

{
ln
(
|R̂t|t|

)
+ tr

{
Rct;t|tR̂

−1
t|t

}
+
(
ξct;t|t − ξ̂t|t

)′
R̂−1

t|t

(
ξct;t|t − ξ̂t|t

)}
.

(52)
One can compute the final Kerridge inaccuracy K for the considered mixture f(xt|D(t)) =∑nc

ct=1 wctf (xt|ct, D(t)) as follows:

K =
nc∑

ct=1

wctKct ,

nc∑
ct=1

wct = 1. (53)

To minimize K, it is necessary to compute derivatives of the individual inaccuracies Kct accord-
ing to ξ̂t|t and R̂t|t. One obtains them as follows:

∂Kct/∂ξ̂t|t = R̂−1
t|t

(
ξ̂t|t − ξct;t|t

)
, (54)

∂Kct/∂R̂t|t = 0.5R̂−1
t|t

[
R̂t|t −Rct;t|t −

(
ξ̂t|t − ξct;t|t

)(
ξ̂t|t − ξct;t|t

)′]
R̂−1

t|t . (55)

For a minimum of (53) it holds

nc∑
ct=1

wctR̂
−1
t|t

(
ξ̂t|t − ξct;t|t

)
= 0, (56)

and

0.5
nc∑

ct=1

wctR̂
−1
t|t

[
R̂t|t −Rct;t|t −

(
ξ̂t|t − ξct;t|t

)(
ξ̂t|t − ξct;t|t

)′]
R̂−1

t|t = 0. (57)

The desired normal distribution N
(
ξ̂t|t, R̂t|t

)
minimizing the Kerridge inaccuracy is thus given

by its characteristics

ξ̂t|t =
nc∑

ct=1

wctξct;t|t, (58)

R̂t|t =
nc∑

ct=1

wctRct;t|t +
nc∑

ct=1

wct

(
ξ̂t|t − ξct;t|t

)(
ξ̂t|t − ξct;t|t

)′
(59)

to be used for the state approximation in Section 6.2.

10.4. Approximation of a mixture of the Dirichlet pdfs by a single Dirichlet pdf

Let
f(α|D(t)) =

∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1Dα

(
ν

ct|ct−1

t−1

)
. (60)
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be a mixture of the Dirichlet pdfs. The task is to find a single Dirichlet pdf f̂ (α|D(t)) = Dα (νt)
of the form

Dα (ν) =
1

B(ν)

∏
i|j

α
νi|j−1

i|j , i, j ∈ c∗

which minimizes the Kerridge inaccuracy

KD

(
f (α|D(t)) ‖ f̂ (α|D(t))

)
=

∫
α∗

f (α|D(t)) ln
1

f̂ (α|D(t))
dα (61)

over the statistics νt = [νi|j;t]i,j∈c∗ .

Substituting f(α|D(t)) and f̂ (α|D(t)) in relation (61) denoted by KD, it is obtained

KD =

∫
α∗

∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1Dα

(
ν

ct|ct−1

t−1

)
ln[Dα (νt)]

−1 dα (62)

=

∫
α∗

∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

1

B(ν
ct|ct−1

t−1 )

∏
i|j

α
ν

ct|ct−1
i|j;t−1

−1

i|j ln

 1

B(νt)

∏
k|l

α
νk|l;t−1

k|l

−1

dα

=

∫
α∗

∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

1

B(ν
ct|ct−1

t−1 )

∏
i|j

α
ν

ct|ct−1
i|j;t−1

−1

i|j

lnB(νt)− ln
∏
k|l

α
νk|l;t−1

k|l

 dα

= lnB(νt)
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

∫
α∗

1

B(ν
ct|ct−1

t−1 )

∏
i|j

α
ν

ct|ct−1
i|j;t−1

−1

i|j dα

−
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

∫
α∗

1

B(ν
ct|ct−1

t−1 )

∏
i|j

α
ν

ct|ct−1
i|j;t−1

−1

i|j

∑
k|l

ln α
νk|l;t−1

k|l dα

=︸︷︷︸
integral of the Dirichlet pdf is equal to 1

= lnB(νt)
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1︸ ︷︷ ︸
=1

−
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

∫
α∗

1

B(ν
ct|ct−1

t−1 )

∏
i|j

α
ν

ct|ct−1
i|j;t−1

−1

i|j

∑
k|l

ln α
νk|l;t−1

k|l dα

= lnB(νt)−
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

∑
k|l

∫
α∗

1

B(ν
ct|ct−1

t−1 )
α

ν
ct|ct−1
k|l;t−1

−1

k|l ln α
νk|l;t−1

k|l dα

= lnB(νt)−
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

∑
k|l

(νk|l;t − 1)

∫
α∗
Dα

(
ν

ct|ct−1

t−1

)
ln αk|l dα

=︸︷︷︸
all what does not belong to the lth row is integrated, giving the marginal Dirichlet pdf

= lnB(νt)−
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

∑
k|l

(νk|l;t − 1)

∫
α∗
Dα

(
ν

ct|ct−1

·|l;t−1

)
ln αk|l dα.
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Using the relation ∫
α∗

ln αi|jDα

(
ν·|j
)

dα = Ξ
(
νi|j
)
, (63)

the Kerridge inaccuracy KD to be minimized with respect to νi|j;t now takes the following form

KD = lnB(νt)−
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

∑
k|l

(νk|l;t − 1)Ξ
(
ν

ct|ct−1

k|l;t−1

)
. (64)

To find the extreme, it is necessary to compute the derivative

∂

∂νi|j;t
KD =

∂

∂νi|j;t

lnB(νt)−
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

∑
k|l

(νk|l;t − 1)Ξ
(
ν

ct|ct−1

k|l;t−1

)
=

∂

∂νi|j;t
lnB(νt)−

∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1

∂

∂νi|j;t

∑
k|l

(νk|l;t − 1)Ξ
(
ν

ct|ct−1

k|l;t−1

)
=
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1Ξ
(
νi|j;t

)
−
∑
ct∈c∗

∑
ct−1∈c∗

wct|ct−1Ξ
(
ν

ct|ct−1

i|j;t−1

)
, i, j ∈ c∗. (65)

A zero gradient is a necessary condition for an extreme. Thus, the condition ∂KD
∂νi|j;t

= 0 for

all i, j ∈ c∗ must be satisfied. According to [23], if a minimized function is convex and it is
defined on a convex domain, the extreme is global minimum. This is the case considered here
(the detailed explanation can be found in [14]). The mentioned property guarantees a quick
and smooth search for the minimum of the Kerridge inaccuracy KD in (62). The search can be
done with the help of standard numerical subroutines. For instance, in Matlab the subroutine
fsolve has been successfully used. About 3 or 4 iterations were needed for obtaining satisfactory
results. The solution can be computed for each row separately.

Remark: By the denotation Ξ
(
νi|j
)

we mean (according to definition) Ψ
(
νi|j
)
−Ψ

(∑
k νk|j

)
.

It means, the argument νi|j is decisive, but the whole row ν·|j is involved. It is necessary to keep
it in mind.
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